Proof of the symmetry of the off - diagonal Hadamard / Seeley - deWitt ’ s coefficients in C ∞ Lorentzian mani - folds by a “ local Wick rotation ”

نویسنده

  • Valter Moretti
چکیده

Abstract: Completing the results achieved in a previous paper, we prove the symmetry of Hadamard/Seeley-deWitt off-diagonal coefficients in smooth D-dimensional Lorentzian manifolds. To this end, it is shown that, in any Lorentzian manifold, a sort of “local Wick rotation” of the metric can be performed provided the metric is a locally analytic function of the coordinates and the coordinates are “physical”. No time-like Killing field is necessary. Such a local Wick rotation analytically continues the Lorentzian metric in a neighborhood of any point, or, more generally, in a neighborhood of a space-like (Cauchy) hypersurface, into a Riemannian metric. The continuation locally preserves geodesically convex neighborhoods. In order to make rigorous the procedure, the concept of a complex pseudo-Riemannian (not Hermitian or Kählerian) manifold is introduced and some features are analyzed. Using these tools, the symmetry of Hadamard/SeeleydeWitt off-diagonal coefficients is proven in Lorentzian analytical manifolds by analytical continuation of the (symmetric) Riemannian heat-kernel coefficients. This continuation is performed in geodesically convex neighborhoods in common with both the metrics. Then, the symmetry is generalized to C non analytic Lorentzian manifolds by approximating Lorentzian C metrics by analytic metrics in common geodesically convex neighborhoods. The symmetry requirement plays a central rôle in the point-splitting renormalization procedure of the one-loop stress-energy tensor in curved spacetimes for Hadamard quantum states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proof of the symmetry of the off-diagonal heat-kernel and Hadamard’s expansion coefficients in general C∞ Riemannian manifolds

Abstract: We consider the problem of the symmetry of the off-diagonal heat-kernel coefficients as well as the coefficients corresponding to the short-distance-divergent part of the Hadamard expansion in general smooth (analytic or not) manifolds. The requirement of such a symmetry played a central rôle in the theory of the point-splitting one-loop renormalization of the stress tensor in either ...

متن کامل

Quantum Spin Dynamics (QSD) II

We continue here the analysis of the previous paper of the Wheeler-DeWitt constraint operator for four-dimensional, Lorentzian, non-perturbative, canonical vacuum quantum gravity in the continuum. In this paper we derive the complete kernel, as well as a physical inner product on it, for a non-symmetric version of the Wheeler-DeWitt operator. We then define a symmetric version of the Wheeler-De...

متن کامل

Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity

AWheeler-Dewitt quantum constraint operator for four-dimensional, non-perturbative Lorentzian vacuum quantum gravity is defined in the continuum. The regulated Wheeler-DeWitt constraint operator is densely defined, does not require any renormalization and the final operator is anomaly-free and at least symmmetric. The technique introduced here can also be used to produce a couple of completely ...

متن کامل

Quantum Spin Dynamics ( QSD ) IIT

We continue here the analysis of the previous paper of the Wheeler-DeWitt constraint operator for four-dimensional, Lorentzian, non-perturbative, canon-ical vacuum quantum gravity in the continuum. In this paper we derive the complete kernel, as well as a physical inner product on it, for a non-symmetric version of the Wheeler-DeWitt operator. We then deene a symmetric version of the Wheeler-De...

متن کامل

Diagonal arguments and fixed points

‎A universal schema for diagonalization was popularized by N.S‎. ‎Yanofsky (2003)‎, ‎based on a pioneering work of F.W‎. ‎Lawvere (1969)‎, ‎in which the existence of a (diagonolized-out and contradictory) object implies the existence of a fixed-point for a certain function‎. ‎It was shown that many self-referential paradoxes and diagonally proved theorems can fit in that schema‎. ‎Here‎, ‎we fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999